Exercise 17

A circular membrane in space lies over the region $x^2 + y^2 \leq a^2$. The maximum z component of points in the membrane is b. Assume that (x, y, z) is a point on the membrane. Show that the corresponding point (r, θ, z) in cylindrical coordinates satisfies the conditions $0 \leq r \leq a$, $0 \leq \theta \leq 2\pi$, $|z| \leq b$.

Solution

Switch to cylindrical coordinates (r, θ, z) using the standard transformation.

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

As a result, the region where the membrane is over becomes

$$x^{2} + y^{2} \le a^{2}$$
$$(r \cos \theta)^{2} + (r \sin \theta)^{2} \le a^{2}$$
$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta \le a^{2}$$
$$r^{2} (\cos^{2} \theta + \sin^{2} \theta) \le a^{2}$$
$$r^{2} \le a^{2}$$
$$r \le a$$

Therefore, since r is nonnegative, $0 \le r \le a$. Since the formulas for x and y are in terms of $\cos \theta$ and $\sin \theta$, respectively, and these are 2π -periodic functions, $0 \le \theta \le 2\pi$. z is the same in cylindrical coordinates as it is in Cartesian coordinates, so if the membrane never goes higher than 8 or lower than -8,

 $-8 \le z \le 8,$

that is

 $|z| \leq 8.$