Exercise 17

A circular membrane in space lies over the region $x^{2}+y^{2} \leq a^{2}$. The maximum z component of points in the membrane is b. Assume that (x, y, z) is a point on the membrane. Show that the corresponding point (r, θ, z) in cylindrical coordinates satisfies the conditions $0 \leq r \leq a$, $0 \leq \theta \leq 2 \pi,|z| \leq b$.

Solution

Switch to cylindrical coordinates (r, θ, z) using the standard transformation.

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

As a result, the region where the membrane is over becomes

$$
\begin{gathered}
x^{2}+y^{2} \leq a^{2} \\
(r \cos \theta)^{2}+(r \sin \theta)^{2} \leq a^{2} \\
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \leq a^{2} \\
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \leq a^{2} \\
r^{2} \leq a^{2} \\
r \leq a
\end{gathered}
$$

Therefore, since r is nonnegative, $0 \leq r \leq a$. Since the formulas for x and y are in terms of $\cos \theta$ and $\sin \theta$, respectively, and these are 2π-periodic functions, $0 \leq \theta \leq 2 \pi$. z is the same in cylindrical coordinates as it is in Cartesian coordinates, so if the membrane never goes higher than 8 or lower than -8 ,

$$
-8 \leq z \leq 8
$$

that is

$$
|z| \leq 8
$$

